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In image processing (e.g., in astronomy), the desired black-and-white image is, 
from the mathematical viewpoint, a set. Hence, to process images, we need to 
process sets. To define a generic set, we need infinitely many parameters; 
therefore, if we want to represent and process sets in the computer, we must restrict 
ourselves to finite-parameter families of sets that will be used to approximate the 
desired sets. The wrong choice of a family can lead to longer computations and 
worse approximation. Hence, it is desirable to find the family that it is the best 
in some reasonable sense. In this paper, we show how the problems of choosing 
the optimal family of sets can be formalized and solved. As a result of the 
described general methodology, for astronomical images, we get exactly the 
geometric shapes that have been empirically used by astronomers and 
astrophysicists; thus, we have a theoretical explanation for these shapes. 

1. I N T R O D U C T I O N  TO THE P R O B L E M  

1.1. Sets Are Needed for Image Processing 

In image processing, our goal is to restore the actual image. For black- 
and-white images, the image can be identified with a set of its black points, 
i.e., with a set in a 2D or in a 3D space. So, in order to process images, we 
must be able to process sets. 

1.2. In the Computer,  We Can Only Use Finite-Parameter Families 
of  Sets 

Images can, in principle, be arbitrarily complicated. 
The ideal description of a set X C R * would include, for any point x 

R k, information on whether this point x belongs to the given set X or not. 
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This information requires infinitely many bits (binary digits) to store. How- 
ever, inside any given computer, we can only store finitely many bits, and 
therefore we can represent the information only about finitely many points 
x ~ R k. In computer imaging, these points are usually called pixels. 

A pixel-by-pixel representation is necessary for some images (e.g., to 
store a high-quality photo) and for computer games (to create the most 
realistic picture). However, such a representation requires a lot of computer 
memory and makes processing the corresponding data extremely slow. There- 
fore, if we want to speed up the processing of these sets, we must somehow 
approximate arbitrarily complicated sets by sets that can be characterized by a 
few real-valued parameters, i.e., by sets that belong to somefinite-dimensional 
family of sets. 

Several families of this type have been efficiently used in image pro- 
cessing. This leads us to a problem: 

1.3. Main Problem: Which Families of Sets Should We Choose? 

In principle, different families of sets can be used. It turns out that often, 
the use of different approximating families leads to different quality of the 
resulting approximation. Therefore, it is important to choose the fight approxi- 
mating family. 

Currently, this choice is mainly made ad hoc, at best, by testing a few 
possible families and choosing the one that performs the best on a few 
benchmarks. Since only a few families are analyzed, one is not sure that one 
did not miss a really good approximating family (and since only a few 
benchmarks are used for comparison, we are not sure that the chosen family 
is indeed the best one). It is therefore desirable to find the optimal family 
of approximating sets. 

1.4. Goal of This Paper 

In this paper, we will describe a general framework for finding the 
optimal family, and illustrate this general idea on the example of 
astronomic imaging. 

2. WHAT DOES " O P T I M A L "  MEAN? MOTIVATIONS FOR THE 
F O L L O W I N G  DEFINITIONS 

2.1. What Is an "Optimality Criterion"? 

When we say "optimal," we mean optimal with respect to some opti- 
mality criterion. When we say that some optimality criterion is given, we 
mean that, given two different families of approximating sets, we can decide 
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whether the first one is better, or the second one is better, or these families 
are of the same quality with respect to the given criterion. In mathematical 
terms, this means that we have a preordering relation ~< on the set of all 
possible finite-dimensional families of sets. 

2.2. We Want to Solve an Ambitious Problem: Enumerate All Finite- 
Dimensional Families of Sets That Are Optimal Relative to 
Some Natural Criteria 

One way to approach the problem of choosing the "best" family of sets 
is to select one optimality criterion and to find a family of sets that is the 
best with respect to this criterion. The main drawback of this approach is 
that there can be different optimality criteria, and they can lead to different 
optimal solutions. It is therefore desirable not only to describe a family of 
sets that is optimal relative to some criterion, but to describe all families of 
sets that can be optimal relative to different natural criteria. In this paper, 
we implement exactly this more ambitious task. 

2.3. Examples of Optimality Criteria 

2.3.1. Numerical Optimality Criteria 

Preordering is the general formulation of optimization problems in gen- 
eral, not only of the problem of choosing a family of sets. In general optimiza- 
tion theory, in which we are comparing arbitrary alternatives A, B . . . . .  from 
a given set s~, the most frequent case of such a preordering is when a 
numerical criterion is used, i.e., when a function J: ~ --> R is given for 
which A ~< B iff J(A) < J(B). 

Several natural numerical criteria can be proposed for choosing the best 
family of sets: if we approximate the actual set of possible values X by an 
element X from the chosen family, then we can measure the quality of the 
approximation by computing the Lebesgue measure of the difference between 
the two sets or by computing the Hausdorff distance between these two sets. 
As an optimality criterion, we can, e.g., choose the average value of this 
quality measure (average in the sense of some natural probability measure 
on the class of all problems). 

Alternatively, we can fix a class of the problem and take the largest 
(worst-case) value of the quality measure for problems of this class as the 
desired (numerical) optimality criterion. 

2.3.2. Nonnumerical Optimality Criteria Naturally Appear 

For "worst-case" optimality criteria, it often happens that there are 
several different alternatives that perform equally well in the worst case, but 
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whose performance differs drastically in the average cases. In this case, it 
makes sense, among all the alternatives with the optimal worst-case behavior, 
to choose the one for which the average behavior is the best possible. This 
very natural idea leads to an optimality criterion that is not described by a 
numerical optimality criterion J(A): in this case, we need two functions: JI(A) 
describes the worst-case behavior, J2(A) describes the average-case behavior, 
and A ~< B iff either Jl(A) < J2(B) or Jl(A) = Jl(B) and Jz(A) <- J2(B). 

We could further specify the described optimality criterion and end up 
with a natural criterion. However, as we have already mentioned, the goal 
of this paper is not to find a family of sets that is optimal relative to some 
criterion, but to describe all families of sets that are optimal relative to some 
natural optimality criteria. In view of this goal, in the following we will 
not specify the criterion, but will describe a very general class of natural 
optimality criteria. 

So, let us formulate what "natural" means. 

2.4. Which Optimality Criteria Are Natural? 

2.4.1. The Criterion Must Be Invariant 

Problems related to geometric sets often have natural symmetries. For 
example, let us consider astronomical images. These images are sets in R 3 
(or in R2). For such sets, there are three natural symmetries: 

First, if  we change the starting point of  the coordinate system from the 
previous origin point O = (0, 0, 0) to the new origin O' whose coordinates 
were initially a -- (al a2, a3), then each point x with old coordinates (xl, x2, 
x3) gets new coordinates x" = xi - ai. As a result, in the new coordinates, 
each set X E A from a family of  images A will be described by a "shifted" 
set Ta(X) = {x - a Ix ~ X }, and the family turns into Ta(A) = { T~(X) IX ~ A }. 
It is reasonable to require that the relative quality of  the two families of  sets 
does not depend on the choice of  the origin. In other words, we require that if 
A is better than B, then the "shifted" A [i.e., Ta(A)] should be better than the 
"shifted" B [i.e., than T~(B)]. 

Second, the choice of a rotated coordinate system is equivalent to rotating 
all the points [x ~ R(x)], i.e., going from a set X to a set R(X) = {R(x) lx ~ X }, 
and from a family A to a new family R(A) = {R(X)IX E A}. It is natural to 
require that the optimality criterion is invariant with respect to rotations, i.e., 
if A is better than B, then R(A) is better than R(B). 

Third, it is often difficult to find the exact distance to the observed 
object. Therefore, we are not sure whether the observed image belongs to a 
small nearby object or to a larger but distant one. As a result of this uncertainty, 
the actual image is only known modulo homothety (similarity, dilation) x ---> 
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h .x  for some real number h > O. It is therefore natural to require that the 
desired optimality criterion be invariant with respect to homothety. 

2.4.2. The Criterion Must Be Final 

If  the criterion does not select any family as an optimal one, i.e., if, 
according to this criterion, none of the families is better than the others, then 
this criterion is of no use in selection. 

If  the criterion considers several different families equally good, then 
we can always use some other criterion to help select between these "equally 
good" ones, thus designing a two-step criterion. I f  this new criterion still 
does not select a unique family, we can continue this process until we arrive 
at a combination multistep criterion for which there is only one optimal family. 

Therefore, we can always assume that our criterion is final in the sense 
that it selects one and only one optimal family. 

3. D E F I N I T I O N S  AND T H E  M A I N  R ES ULT 

Our goal is to choose the best finite-parameter family of  sets. To formu- 
late this problem precisely, we must formalize what a finite-parameter family 
is and what it means for a family to be optimal. In accordance with our 
informal description, both formalizations will use natural symmetries. So, 
we will first formulate how symmetries can be defined for families of  sets, 
then what it means for a family of  sets to be finite-dimensional, and, finally, 
how to describe an optimality criterion. 

Definition 1. Let g: M --> M be a 1-1 transformation of a set M, and 
let A be a family of  subsets of  M. For each set X ~ A, we define the result 
g(X) of applying this transformation g to the set X as {g(x)Ix ~ X}, and we 
define the result g(A) of applying the transformation g to the family A as the 
family {g(X)IX ~ A}. 

Definition 2. Let M be a smooth manifold. A group G of transformations 
M ---> M is called a Lie transformation group if  G is endowed with a structure 
of  a smooth manifold for which the m app i ng  g, a --> g(a) from G • M to 
M is smooth. 

We want to define r-parameter families sets in such a way that symmetries 
from G would be computable based on parameters. Formally" 

Definition 3. Let M and N be smooth manifolds. 

�9 By a multivaluedfunction F: M --> N we mean a function that maps 
each m ~ M into  a discrete set F(m) C N. 
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�9 We say that a multivalued function is smooth if for every point 
mo ~ M and for every value f0 ~ F(m), there exists an open neighbor- 
hood U of  m0 and a smooth function3~ U ~ N for whichf(m0) = f0 and 
for every m ~ U, f(m) C F(m). 

Definition 4. Let G be a Lie transformation group on a smooth mani- 
fold M. 

�9 We say that a class A of closed subsets of M is G-invariant if for 
every set X ~ A, and for every transformation g ~ G, the set g(X) 
also belongs to the class. 

�9 If  A is a G-invariant class, then we say that A is a finitely parameter 
family of sets if there exist: 
- - a  (finite-dimensional) smooth manifold V; 
- - a  mapping s that maps each element v ~ V into a set s(v) C M; and 
- - a  smooth multivalued function H: G x V -~ V 
such that: 
- - t h e  class of all sets s(v) that corresponds to different v ~ Vcoincides 

with A, and 
- - f o r  every v E V, for every transformation g ~ G, and for every 

-rr ~ II(g, v), the set s(w) (which corresponds to ~r) is equal to 
the result g(s(v)) of applying the transformation g to the set s(v) 
(which corresponds to v). 

�9 Let r > 0 be an integer. We say that a class of sets B is an r-parameter 
class of sets if there exists a finite-dimensional family of  sets A 
defined by a triple (V, s, H) for which B consists of all the sets s(v) 
with v from some r-dimensional submanifold W C V. 

Definition 5. Let M be a set, and let G be a group of  transformations 
defined on M. 

�9 By an optimality criterion, we mean a preordering (i.e., a transitive 
reflexive relation) ~< on the set si. 

�9 An optimality criterion is called G-invariant if for all g e G and for 
all A, B ~ M, A < B implies g(A) <. g(B). 

�9 An optimality criterion is called final if there exists one and only 
one element A e M that is preferable to all the others, i.e., for which 
B <, A for all B ~ A. 

�9 An optimality criterion is called natural if it is G-invariant and final. 

Theorem. Let M be a manifold, let G be a d-dimensional Lie transforma- 
tion group on M, and let < be a natural (i.e., G-invariant and final) optimality 
criterion on the class M of all r-parameter families of sets from M, r < d. Then: 

�9 The optimal family Aopt is G-invariant; and 
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�9 each set X from the optimal family is a union of orbits of - ( d  - r)- 
dimensional subgroups of the group G. 

(For the reader's convenience, the proof is given in the final section.) 

4. ASTROGEOMETRY: PHYSICAL APPLICATION OF THE 
MAIN RESULT 

Celestial bodies such as galaxies, stellar clusters, planetary systems, etc., 
have different geometric shapes (e.g., galaxies can be spiral or circular, etc.). 
Usually, complicated physical theories are used to explain these shapes; for 
example, several dozen different theories explain why many galaxies are of 
spiral shape (see, e.g., Toomre and Toomre, 1973; Strom and Strom, 1979; 
Vorontsov-Veliaminov, 1987; Binney, 1989). Some rare shapes are still 
unexplained. 

In this section, we show that to explain these "astroshapes" we do not 
need to know the details of physical equations: practically all the shapes of 
celestial bodies can be explained by simple geometric invariance properties. 
This fact explains, e.g., why so many different physical theories lead to the 
same spiral galaxy shape. 

4.1. The Symmetry Group That Corresponds to Astrogeometry 

In astrogeometry (i.e., in analysis of geometric astronomical images), 
we are interested in images X C R 3. As already mentioned, for astronomical 
images, the natural group of symmetries Ga is generated by shifts, rotations, 
and dilations. 

So, to apply our main result to astrogeometry, we must describe all 
orbits of subgroups of G,. 

4.2. How to Describe Orbits of Subgroups of  Ga 

A I D  orbit is an orbit of a 1D subgroup. This subgroup is uniquely 
determined by its "infinitesimal" element, i.e., by the corresponding element 
of the Lie algebra of the group G. This Lie algebra is easy to describe. For 
each of its elements, the corresponding differential equation (which describes 
the orbit) is reasonably easy to solve. 

Two-dimensional forms are orbits of - 2D subgroups, so they can be 
enumerated by combining two 1D subgroups. 

Comment. An alternative (slightly more geometric) way of describing 
ID orbits is to take into consideration that an orbit, just like any other curve 
in a 3D space, is uniquely determined by its curvature Kl(s) and torsion Kz(S), 
where s is the arc length measured from some fixed point. The fact that this 
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curve is an orbit of a 1D group means that for every two points x and x'  on 
this curve, there exists a transformation g ~ G that maps x into x'.  Shifts 
and rotations do not change Ki, they may only shift s (to s + So); dilations 
also change s, to s ---> h-s,  and change the numerical values of  Ki. So, for 
every s, there exist h(s) and So(S) such that the corresponding transformation 
turns a point corresponding to s = 0 into a point corresponding to s. As a 
result, we get functional equations that combine the two functions K,.(S) and 
these two functions h(s) and So(S). Taking an infinitesimal value s in these 
functional equations, we get differential equations, whose solution leads to 
the desired I D orbits. 

4.3. As a Result of Applying Our Main Idea, We Get Exactly All 
Observable Astroshapes 

4.3.1. Possible Orbits 

The resulting description of 0-, 1-, and 2-dimensional orbits of  connected 
subgroups Ga of  the group G is as follows: 

0: The only 0-dimensional orbit is a point. 
1: A generic 1-dimensional orbit is a conic spiral that is described (in 

cylindrical coordinates) by the equations z = kp and p = R0 exp(cq~). Its 
limit cases are: 

- - a  logarithmic (Archimedean) spiral: a planar curve (z = 0) that is 
described (in polar coordinates) by the equation p = R0 exp(cq~); 

- - a  cylindrical spiral, which is described (in appropriate coordinates) 
by the equations z = k~b, p = Ro; 

- - a  circle (z = 0, p = Ro); 
- - a  semiline (ray); and 
- - a  straight line. 

2: Possible 2D orbits include: 
- - a  plane; 
- - a  semiplane; 
- - a  sphere; 
- - a  circular cone; 
- - a  circular cylinder; and 
- - a  logarithmic cylinder, i.e., a cylinder based on a logarithmic spiral. 

4.3.2. Possible Orbits Are Exactly Possible Shapes 

Comparing these orbits (and ellipsoids, the ultimate stable shapes) with 
astroshapes enumerated, e.g., in Vorontsov-Veliaminov (1987) we conclude 
that: 
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�9 First, our scheme describes all observed connected shapes. 
�9 Second, all the above orbits, except the logarithmic cylinder, have 

actually been observed as shapes of celestial bodies. 

For example, according to Chapter III of Vorontsov-Veliaminov (1987), 
galaxies consist of components of the following geometric shapes: 

�9 bars (cylinders); 
�9 disks (parts of the plane); 
�9 rings (circles); 
�9 arcs (parts of circles and lines); 
�9 radial rays; 
�9 logarithmic spirals; 
�9 spheres; and 
�9 ellipsoids. 

It is easy to explain why a logarithmic cylinder has never been observed: 
from whatever point we view it, the logarithmic cylinder blocks all the sky, 
so it does not lead to any visible shape in the sky at all. With this explanation, 
we can conclude that we have a perfect explanation o f  all observed 
astroshapes. 

4.3.3. Comment: We Can Also Explain Difficult-to-Explain 
Disconnected Shapes 

In the above description, we only considered connected continuous 
subgroups Go C_ G. Connected continuous subgroups explain connected 
shapes. 

It is natural to consider disconnected (in particular, discrete) subgroups 
as well; the orbits of these subgroups leads to disconnected shapes. Thus, 
we can explain these shapes, most of which modem astrophysics finds patho- 
logical and difficult to explain (see, e.g., Vorontsov-Veliaminov, 1987, Section 
1.3). For example, an orbit O of a discrete subgroup G6 of the 1D group Go 
(whose orbit is a logarithmic spiral) consists of points whose distances rn to 
the center forms a geometric progression: rn -- r0"/r Such a dependence 
(called the Titzius-Bode law) has indeed been observed (as early as the 18th 
century) for planets of the solar system and for the satellites of the planets 
(this law actually led to the prediction and discovery of what are now called 
asteroids). Thus, we get a purely geometric explanation o f  the Titzius- 
Bode law. 

Less-known examples of disconnected shapes that can be explained in 
this manner include: 

�9 several parallel equidistant lines (Vorontsov-Veliaminov, 1987, Sec- 
tion 1.3); 
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�9 several circles located on the same cone, whose distances from the 
cone's vertex form a geometric progression (Vorontsov-Veliaminov, 
1987, Section 111.9); 

�9 equidistant points on a straight line (Vorontsov-Veliaminov, 1987, 
Sections VII.3 and IX.3); 

�9 "piecewise circles": equidistant points on a circle; an example is 
MCG 0-9-15 (Vorontsov-Veliaminov, 1987, Section VII.3); 

�9 "piecewise spirals": points on a logarithmic spiral whose distances 
from a center form a geometric progression: some galaxies of Sc 
type are like this (Vorontsov-Veliaminov, 1987). 

Comment. Arnold has shown (see, e.g., Arnold, 1978; Thom, 1975) 
that dynamical systems theory explains why the observed shape should be 
topological homeomorphic to a spiral. We have explained even more: not 
only that this shape is homeomorphic to the spiral, but that, geometrically, 
this shape is exactly a logarithmic spiral. 

4.3.4. This Idea Also Explains Evolution of Geometric Shapes, Their 
Relative Frequency, Directions of Rotation and of Magnetic Field 

Our main idea can be used to explain not only the shapes themselves, 
but also how they evolve, which shapes are more frequent, etc. [For details, 
see, e.g., Kreinovich (1981), Kosheleva etal. (1982), Kosheleva and Kreinov- 
ich (1989), and Finkelstein et al. (1996)]. This explanation is, however, still on 
the physical level, so we still need to describe it in precise mathematical terms. 

5. PROOF OF THE T H E O R E M  

Since the criterion <~ is final, there exists one and only one optimal 
family of sets. Let us denote this family by Aopt. 

1. Let us first show that this family Aopt is indeed G-invariant, i.e., that 
g(Aopt) = Aopt for every transformation g ~ G. 

Indeed, let g E G. From the optimality of Aopt, we conclude that for 
every B e ~/, g-l(B) ~ Aopt. From the G-invariance of the optimality criterion, 
we can now conclude that B ~< g(Aopt). This is true for all B E ~ and 
therefore the family g(Aopt) is optimal. But since the criterion is final, there 
is only one optimal family; hence, g(Aopt) = Aopt. So, Aopt is indeed invariant. 

2. Let us now show an arbitrary set X0 from the optimal family Aopt 
consists of orbits of ->(d - 0-dimensional subgroups of the group G. 

Indeed, the fact that Aop t is G-invariant means, in particular, that for 
every g ~ G, the set g(Xo) also belongs to Aop t. Thus, we have a (smooth) 
mapping g --~ g(Xo) from the d-dimensional manifold G into the <--r-dimen- 
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sional set G(Xo) = {g(Xo)lg E G} C_ Aop t. In the following, we will denote 
this mapping by g0- 

Since r < d, this mapping cannot be 1-1,  i.e., for some sets X = g'(Xo) 
G(Xo), the preimage gol(X) = {glg(Xo) = g'(X0)} consists of more than 

one point. By definition of g(X), we can conclude that g(Xo) = g'(Xo) iff 
(g')-lg(Xo) = Xo. Thus, this preimage is equal to {gl(g')-lg(Xo) = X0}. If 
we denote (g,)-lg by g, we conclude that g = g'g and that the preimage 
gffl(X) = gffl(g'(Xo)) is equal to {g'gl~(Xo) = X0}, i.e., to the result of 
applying g' to {gig(X0) = X0} = gol(Xo). Thus, each preimage (gffl(X) = 
gol(g'(Xo))) can be obtained from one of these preimages [namely, from 
gff l(X0)] by a smooth invertible transformation g'.  Thus, all preimages have 
the same dimension D. 

We thus have a stratification (fiber bundle) of a d-dimensional manifold 
G into D-dimensional strata, with the dimension Df of the factor-space being 
--r. Thus, d = D + Of, and from Of <-- r, we conclude that D = d - Of >- 
n - -  r .  

So, for every set Xo ~ Aopt, we have a D --> (n - O-dimensional subset 
Go C G that leaves Xo invariant [i.e., for which g(Xo) = Xo for all g ~ Go]. 
It is easy to check that if g, g' e Go, then gg' ~ Go and g-1 e Go, i.e., that 
Go is a subgroup of the group G. From the definition of Go as {glg(Xo) = 
Xo} and the fact that g(Xo) is defined by a smooth transformation, we conclude 
that Go is a smooth submanifold of G, i.e., a -->(n - O-dimensional subgroup 
of G. 

To complete our proof, we must show that the set Xo is a union of orbits 
of the group Go. Indeed, the fact that g(Xo) = Xo means that for every x 
Xo and for every g ~ Go, the element g(x) also belongs to Xo. Thus, for every 
element x of  the set Xo, its entire orbit {g(x)lg ~ Go} is contained in X0. 
Thus, Xo is indeed the union of orbits of Go. QED 
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